Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1393073, 2024.
Article in English | MEDLINE | ID: mdl-38690368

ABSTRACT

Carbon catabolite repression (CCR) is a highly conserved mechanism that regulates carbon source utilization in Streptomyces. CCR has a negative impact on secondary metabolite fermentation, both in industrial and research settings. In this study, CCR was observed in the daunorubicin (DNR)-producing strain Streptomyces coeruleorubidus DM, which was cultivated in high concentration of carbohydrates. Unexpectedly, DM exhibited a high ability for anthraquinone glucuronidation biotransformation under CCR conditions with a maximum bioconversion rate of 95% achieved at pH 6, 30°C for 24 h. The co-utilization of glucose and sucrose resulted in the highest biotransformation rate compared to other carbon source combinations. Three novel anthraquinone glucuronides were obtained, with purpurin-O-glucuronide showing significantly improved water solubility, antioxidant activity, and antibacterial bioactivity. Comparative transcript analysis revealed that glucose and sucrose utilization were significantly upregulated as DM cultivated under CCR condition, which strongly enhance the biosynthetic pathway of the precursors Uridine diphosphate glucuronic acid (UDPGA). Meanwhile, the carbon metabolic flux has significantly enhanced the fatty acid biosynthesis, the exhaust of acetyl coenzyme A may lead to the complete repression of the biosynthesis of DNR, Additionally, the efflux transporter genes were simultaneously downregulated, which may contribute to the anthraquinones intracellular glucuronidation. Overall, our findings demonstrate that utilizing CCR can be a valuable strategy for enhancing the biotransformation efficiency of anthraquinone O-glucuronides by DM. This approach has the potential to improve the bioavailability and therapeutic potential of these compounds, opening up new possibilities for their pharmaceutical applications.

2.
Pain ; 165(6): 1391-1403, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38227559

ABSTRACT

ABSTRACT: Neuropathic corneal pain (NCP) is a new and ill-defined disease characterized by pain, discomfort, aching, burning sensation, irritation, dryness, and grittiness. However, the mechanism underlying NCP remain unclear. Here, we reported a novel rat model of primary NCP induced by long ciliary nerve (LCN) ligation. After sustained LCN ligation, the rats developed increased corneal mechanical and chemical sensitivity, spontaneous blinking, and photophobia, which were ameliorated by intraperitoneal injection of morphine or gabapentin. However, neither tear reduction nor corneal injury was observed in LCN-ligated rats. Furthermore, after LCN ligation, the rats displayed a significant reduction in corneal nerve density, as well as increased tortuosity and beading nerve ending. Long ciliary nerve ligation also notably elevated corneal responsiveness under resting or menthol-stimulated conditions. At a cellular level, we observed that LCN ligation increased calcitonin gene-related peptide (neuropeptide)-positive cells in the trigeminal ganglion (TG). At a molecular level, upregulated mRNA levels of ion channels Piezo2, TRPM8, and TRPV1, as well as inflammatory factors TNF-α, IL-1ß, and IL-6, were also detected in the TG after LCN ligation. Meanwhile, consecutive oral gabapentin attenuated LCN ligation-induced corneal hyperalgesia and increased levels of ion channels and inflammation factors in TG. This study provides a reliable primary NCP model induced by LCN ligation in rats using a simple, minimally invasive surgery technique, which may help shed light on the underlying cellular and molecular bases of NCP and aid in developing a new treatment for the disease.


Subject(s)
Cornea , Disease Models, Animal , Gabapentin , Neuralgia , Rats, Sprague-Dawley , Animals , Neuralgia/etiology , Male , Rats , Gabapentin/pharmacology , Gabapentin/therapeutic use , Ligation , Cornea/innervation , Trigeminal Ganglion/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , gamma-Aminobutyric Acid/metabolism , Cyclohexanecarboxylic Acids/pharmacology , Cyclohexanecarboxylic Acids/therapeutic use , Calcitonin Gene-Related Peptide/metabolism , Amines/pharmacology , Amines/therapeutic use , Morphine/pharmacology , Morphine/therapeutic use , Eye Pain/etiology , Hyperalgesia/etiology , Hyperalgesia/physiopathology
3.
J Steroid Biochem Mol Biol ; 231: 106312, 2023 07.
Article in English | MEDLINE | ID: mdl-37062346

ABSTRACT

Stress-induced hyperalgesia is a health-threatening condition that lacks effective therapeutic intervention, impairing the quality of life. Interestingly, a high prevalence of corneal pain symptoms was also found in patients experienced severe stressors. Excessive secretion corticosterone in rodents has been shown to contribute to the development of visceral and mechanical hyperalgesia under stressful conditions. The co-chaperone protein FK506-binding protein 5 (FKBP5) was reported to modulate steroid sensitivity and inhibition of FKBP51 possessed anxiolytic and anti-hyperalgesic in the stressed-mice model. However, whether corticosterone and FKBP5 play a role in chronic stress-induced corneal hyperalgesia remains unknown. The aim of this study was to evaluate the corneal sensitivity after exposure to chronic restraint stress (CRS) and investigate the potential role of corticosterone and FKBP5 mediated proinflammatory cytokines release in trigeminal ganglion (TG) in corneal hyperalgesia under chronic stressful situations. Firstly, mice displayed increased corneal sensitivity without changes in tear production and corneal injury after CRS for 4 hours/day for 14 days. Meanwhile, corticosterone deficiency via adrenalectomy could prevent CRS-induced corneal hyperalgesia, whereas chronic corticosterone feeding increased the corneal sensitivity accompanied by increasing proinflammatory cytokines levels of phospho-NF-κB (p-NF-κB), tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in the TG on d14. Notably, we found that FKBP51 was significantly upregulated in the TG in the stressed-mice. Intraperitoneal injection of FKBP51 inhibitor significantly alleviated CRS-induced corneal hyperalgesia, and reversed calcitonin gene related peptide (CGRP) increase and proinflammatory cytokines production in the TG. Moreover, FKBP51 inhibitor could also exert its anti-hyperalgesic effect on corneal pain through intra-TG injection. Our study proves that CRS can induce corneal hyperalgesia in mice and uncovers the role of corticosterone and FKBP51 in modulating corneal sensitivity, providing a novel treatment strategy for stress-induced corneal hyperalgesia. AVAILABILITY OF DATA AND MATERIALS: All data and additional file are available upon request from the corresponding author.


Subject(s)
Corticosterone , Hyperalgesia , Mice , Animals , Corticosterone/metabolism , Hyperalgesia/etiology , Hyperalgesia/metabolism , NF-kappa B/metabolism , Trigeminal Ganglion/metabolism , Quality of Life , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Pain/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Inflammation/metabolism
4.
Genes Brain Behav ; 22(2): e12842, 2023 04.
Article in English | MEDLINE | ID: mdl-36889983

ABSTRACT

Dry eye disease (DED) affects nearly 55% of people worldwide; several studies have proposed that central sensitization and neuroinflammation may contribute to the developing corneal neuropathic pain of DED, while the underlying mechanisms of this contribution remain to be investigated. Excision of extra orbital lacrimal glands established the dry eye model. Corneal hypersensitivity was examined through chemical and mechanical stimulation, and open field test measured the anxiety levels. Restingstate fMRI is a method of functional magnetic resonance imaging (rs-fMRI) was performed for anatomical involvement of the brain regions. The amplitude of low-frequency fluctuation (ALFF) determined brain activity. Immunofluorescence testing and Quantitative real-time polymerase chain reaction were also performed to further validate the findings. Compared with the Sham group, ALFF signals in the supplemental somatosensory area, secondary auditory cortex, agranular insular cortex, temporal association areas, and ectorhinal cortex brain areas were increased in the dry eye group. This change of ALFF in the insular cortex was linked with the increment in corneal hypersensitivity (p < 0.01), c-Fos (p < 0.001), brain-derived neurotrophic factor (p < 0.01), TNF-α, IL-6, and IL-1ß (p < 0.05). In contrast, IL-10 levels (p < 0.05) decreased in the dry eye group. DED-induced corneal hypersensitivity and upregulation of inflammatory cytokines could be blocked by insular cortex injection of Tyrosine Kinase receptor B agonist cyclotraxin-B (p < 0.01) without affecting anxiety levels. Our study reveals that the functional activity of the brain associated with corneal neuropathic pain and neuroinflammation in the insular cortex might contribute to dry eye-related corneal neuropathic pain.


Subject(s)
Dry Eye Syndromes , Neuralgia , Mice , Animals , Insular Cortex , Neuroinflammatory Diseases , Cerebral Cortex/diagnostic imaging , Dry Eye Syndromes/chemically induced
5.
Gut ; 72(9): 1664-1677, 2023 09.
Article in English | MEDLINE | ID: mdl-36604114

ABSTRACT

OBJECTIVE: Gut microbiota dysbiosis is closely linked to the pathogenesis of rheumatoid arthritis (RA). We aimed to identify potential probiotic gut microbes that can ameliorate the development of RA. DESIGN: Microbiota profiling in patients with RA and healthy individuals was investigated via 16S rDNA bacterial gene sequencing and shotgun metagenomics. Collagen-induced arthritic mice and TNF-α transgenic mice were used to evaluate the roles of the gut commensal Parabacteroides distasonis in RA. The effects of P. distasonis-derived microbial metabolites on the differentiation of CD4+ T cells and macrophage polarisation were also investigated. RESULTS: The relative abundance of P. distasonis in new-onset patients with RA and patients with RA with history of the disease was downregulated and this decrease was negatively correlated with Disease Activity Score-28 (DAS28). Oral treatment of arthritic mice with live P. distasonis (LPD) considerably ameliorated RA pathogenesis. LPD-derived lithocholic acid (LCA), deoxycholic acid (DCA), isolithocholic acid (isoLCA) and 3-oxolithocholic acid (3-oxoLCA) had similar and synergistic effects on the treatment of RA. In addition to directly inhibiting the differentiation of Th17 cells, 3-oxoLCA and isoLCA were identified as TGR5 agonists that promoted the M2 polarisation of macrophages. A specific synthetic inhibitor of bile salt hydrolase attenuated the antiarthritic effects of LPD by reducing the production of these four bile acids. The natural product ginsenoside Rg2 exhibited its anti-RA effects by promoting the growth of P. distasonis. CONCLUSIONS: P. distasonis and ginsenoside Rg2 might represent probiotic and prebiotic agents in the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Mice , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Bacteroidetes , Bacteria
6.
Phytomedicine ; 109: 154595, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610135

ABSTRACT

BACKGROUND: Increasing hepatic insulin signaling is found to be an important mechanism of Platycodon grandiflorus root to alleviate metabolic syndrome (MetS) symptoms such as insulin resistance, obesity, hyperlipidemia and hepatic steatosis, but the details are not yet clear. Since the main constituents of Platycodon grandiflorus root were hard to be absorbed by gastrointestinal tract, getting opportunity to interact with gut microbiota, we speculate the gut microorganisms may mediate its effect. PURPOSE: Our work aimed to confirm the critical role of gut microbes in the intervention of Platycodon grandiflorus root extract (PRE) on MetS, and investigate the mechanism. METHODS: Biochemical analyses, glucose tolerance test and hepatic lipidomics analysis were used to evaluate the anti-MetS effect of PRE on high fat diet (HFD) fed mice. Perform 16S rDNA analysis, qPCR analysis and in vitro co-incubation experiment to study its effect on gut microbes, followed by fecal microbiota transplantation (FMT) experiment and antibiotics intervention experiment. Also, the effect of Akkermansia muciniphila treatment on HFD mice was investigated. RESULTS: PRE alleviated lipid accumulation and insulin resistance in HFD mice and remodeled the fecal microbiome. It also increased the gene expression of colonic tight junction proteins, alleviated metabolic endotoxemia and inflammation, so that reduced TNF-α induced hepatic JNK-dependent IRS-1 serine phosphorylation and the impairment of PI3K/PIP3/Akt insulin signaling pathway. A. muciniphila was one of the most significantly enriched microbes by PRE treatment, and its administration to HFD mice showed similar effects to PRE, repairing the gut barrier and activating hepatic PI3K/PIP3/Akt pathway. Finally, anti-MetS effect of PRE could be delivered to FMT recipients, and PRE could not further attenuate MetS in gut microbiota depleted mice. CONCLUSION: We demonstrated for the first time that PRE alleviated MetS in a gut microbiota dependent manner, and found activation of hepatic insulin signaling mediated by gut A. muciniphila was a potential mechanism of it.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Platycodon , Animals , Mice , Insulin/metabolism , Diet, High-Fat/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Plant Extracts/pharmacology , Signal Transduction , Mice, Inbred C57BL
7.
Nutrients ; 14(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36558437

ABSTRACT

Glycyrrhizinic acid (GL) is clinically applied to treat liver injury, and the bioavailability of orally administered GL is closely related to the gut microbiota. Therefore, the dysbiosis of gut flora in liver injury could significantly influence GL bioavailability. Still, less is known about the impact of probiotic supplementation on the bio-absorption process of oral medication, especially under a pathological state. Herein, probiotic L. rhamnosus R0011 (R0011) with a high viability in the harsh gastrointestinal environment was selected, and the effect of R0011 on the GL bioavailability in rats was investigated. Four groups of rats (n = 6 per group) were included: the normal group (N group), the normal group supplemented with R0011 (NLGG group), CCl4-induced chronic liver injury model (M group), and the model group supplemented with R0011 (MLGG group). Our results showed that liver injury was successfully induced in the M and MLGG groups via an intraperitoneal injection of 50% (v/v) CCl4 solution. Healthy rats supplemented with R0011 could increase the bioavailability of GL by 1.4-fold compared with the normal group by plasma pharmacokinetic analysis. Moreover, the GL bioavailability of MLGG group was significantly increased by 4.5-fold compared with the model group. R0011 directly improved gut microbial glucuronidase and downregulated the host intestinal drug transporter gene expression of multidrug resistance protein 2 (MRP2). More critically, R0011 restored the gut microbiota composition and regulated the metabolic function, significantly enhancing the microbial tryptophan metabolic pathway compared with the pathological state, which may indirectly promote the bioavailability of GL. Overall, these data may provide possible strategies by which to address the low bioavailability of traditional medicine through probiotic intervention.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Rats , Animals , Glycyrrhizic Acid/pharmacology , Biological Availability , Dietary Supplements , Liver Cirrhosis
8.
Future Microbiol ; 17: 293-309, 2022 03.
Article in English | MEDLINE | ID: mdl-35164528

ABSTRACT

Quorum sensing (QS), a chemical communication process between bacteria, depends on the synthesis, secretion and detection of signal molecules. It can synchronize the gene expression of bacteria to promote cooperation within the population and improve competitiveness among populations. The preliminary exploration of bacterial QS has been completed under ideal and highly controllable conditions. There is an urgent need to investigate the QS of bacteria under natural conditions, especially the QS of intestinal flora, which is closely related to health. Excitingly, growing evidence has shown that QS also exists in the intestinal flora. The crosstalk of QS between gut microbiota and the host is systematically clarified in this review.


Plain language summary A large number of bacteria live in the human intestinal tract and they are closely related to intestinal health. Bacteria also rely on a number of chemicals to communicate in the intestine. These chemicals play an essential role in the intestinal mucosal barrier as well as the inflammatory response. Studies have found that this method of communication affects the metabolic function of the bacteria in the gut. The cells in our intestine can also detect this communication between bacteria and communicate with the intestinal flora by producing similar substances.


Subject(s)
Gastrointestinal Microbiome , Quorum Sensing , Bacteria/genetics , Bacteria/metabolism
9.
J Antibiot (Tokyo) ; 75(3): 176-180, 2022 03.
Article in English | MEDLINE | ID: mdl-35064242

ABSTRACT

On the basis of the one strain-many compounds (OSMAC) strategy, two new hygromycin A derivatives (3, 4), together with six known compounds were isolated from a medicinal plant inter rhizospheric Streptomyces in Pulsatilla chinensis. The structures of 3 and 4 were elucidated using NMR and HRESIMS analyses. A plausible biosynthetic pathway for these compounds was discussed. All the compounds were evaluated for their antimicrobial and cytotoxic activities. Compound 5 exhibited potent inhibitory activity against S. aureus and B. subtilis with the MICs of 16 and 8 µg ml-1, while 4 showed weak inhibitory activity against S. aureus.


Subject(s)
Cinnamates/isolation & purification , Hygromycin B/analogs & derivatives , Pulsatilla/microbiology , Soil/chemistry , Streptomyces/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Cinnamates/pharmacology , Hygromycin B/isolation & purification , Hygromycin B/pharmacology , Microbial Sensitivity Tests/methods , Rhizosphere , Soil Microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics
10.
Front Immunol ; 13: 1090877, 2022.
Article in English | MEDLINE | ID: mdl-36591243

ABSTRACT

Background: Neovascularization and inflammatory response are two essential features of corneal allograft rejection. Here, we investigated the impact of Piperlongumine (PL) on alleviating corneal allograft rejection, primarily focusing on pathological angiogenesis and inflammation. Methods: A murine corneal allograft transplantation model was utilized to investigate the role of PL in preventing corneal allograft rejection. PL (10 mg/kg) or vehicle was intraperitoneally injected daily into BALB/c recipients from day -3 to day 14. The clinical signs of the corneal grafts were monitored for 30 days. Corneal neovascularization and inflammatory cell infiltration were detected by immunofluorescence staining and immunohistochemistry. The proportion of CD4+ T cells and macrophages in the draining lymph nodes (DLNs) was examined by flow cytometry. In vitro, HUVECs were cultured under hypoxia or incubated with TNF-α to mimic the hypoxic and inflammatory microenvironment favoring neovascularization in corneal allograft rejection. Multiple angiogenic processes including proliferation, migration, invasion and tube formation of HUVECs in hypoxia with or without PL treatment were routinely evaluated. The influence of PL treatment on TNF-α-induced pro-inflammation in HUVECs was investigated by real-time PCR and ELISA. Results: In vivo, PL treatment effectively attenuated corneal allograft rejection, paralleled by coincident suppression of neovascularization and alleviation of inflammatory response. In vitro, PL distinctively inhibited hypoxia-induced angiogenic processes in HUVECs. Two key players in hypoxia-induced angiogenesis, HIF-1α and VEGF-A were significantly suppressed by PL treatment. Also, TNF-α-induced pro-inflammation in HUVECs was hampered by PL treatment, along with a pronounced reduction in ICAM-1, VCAM-1, CCL2, and CXCL5 expression. Conclusions: The current study demonstrated that PL could exhibit both anti-angiogenic and anti-inflammatory effects in preventing corneal allograft rejection, highlighting the potential therapeutic applications of PL in clinical strategy.


Subject(s)
Corneal Diseases , Corneal Transplantation , Mice , Animals , Tumor Necrosis Factor-alpha , Neovascularization, Pathologic , Inflammation/drug therapy , Hypoxia
11.
Front Microbiol ; 12: 786464, 2021.
Article in English | MEDLINE | ID: mdl-34970243

ABSTRACT

Natural flavonoids, formononetin and ononin, possess antioxidant, antibacterial, anti-inflammatory and neuroprotective effects. Many complications caused by SARS-CoV-2 make patients difficult to recover. Flavonoids, especially formononetin and ononin, have the potential to treat SARS-CoV-2 and improve myocardial injury. However, their poor water solubility, poor oral absorption, high toxicity, and high-cost purification limit industrial practical application. Succinylation modification provides a solution for the above problems. Formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside (FMP), a new compound, was succinyl glycosylated from formononetin by the organic solvent tolerant bacteria Bacillus amyloliquefaciens FJ18 in a 10.0% DMSO (v/v) system. The water solubility of the new compound was improved by over 106 times compared with formononetin, which perfectly promoted the application of formononetin and ononin. The conversion rate of formononetin (0.5 g/L) was almost 94.2% at 24 h, while the yield of formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside could achieve 97.2%. In the isoproterenol (ISO)-induced acute ischemia mice model, the myocardial injury was significantly improved with a high dose (40 mg/kg) of formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside. The lactate dehydrogenase level was decreased, and the catalase and superoxide dismutase levels were increased after formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside treatment. Thus, formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside has high water solubility, low toxicity, and shows significant antimyocardial ischemia effects.

12.
Front Microbiol ; 12: 644679, 2021.
Article in English | MEDLINE | ID: mdl-33868203

ABSTRACT

In this study, a white rot fungus Antrodia was newly isolated and named P5. Then its dye biodegradation ability was investigated. Our results showed that P5 could effectively degrade 1,000 mg/L Reactive Blue 4 (RB4) in 24 h with 95% decolorization under shaking conditions. It could tolerate a high dye concentration of 2,500 mg/L as well as 10% salt concentration and a wide range of pH values (4-9). Herbal extraction residues (HER) were screened as additional medium elements for P5 biodegradation. Following the addition of Fructus Gardeniae (FG) extraction residue, the biodegradation performance of P5 was significantly enhanced, achieving 92% decolorization in 12 h. Transcriptome analysis showed that the expression of multiple peroxidase genes was simultaneously increased: Lignin Peroxidase, Manganese Peroxidase, Laccase, and Dye Decolorization Peroxidase. The maximum increase in Lignin Peroxidase reached 10.22-fold in the presence of FG. The results of UV scanning and LC-HRMS showed that with the synergistic effect of FG, P5 could remarkably accelerate the biodegradation process of RB4 intermediates. Moreover, the fungal treatment with FG also promoted the abatement of RB4 toxicity. In sum, white rot fungus and herbal extraction residue were combined and used in the treatment of anthraquinone dye. This could be applied in practical contexts to realize an efficient and eco-friendly strategy for industrial dye wastewater treatment.

13.
Acta Biochim Biophys Sin (Shanghai) ; 53(7): 883-892, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33929026

ABSTRACT

Propofol is widely used for the induction and maintenance of anesthesia, which causes a rapid loss of consciousness. However, the mechanisms underlying the hypnosis effect of propofol are still not fully understood. The thalamic reticular nucleus (TRN) is crucial for regulating wakefulness, sleep rhythm generation, and sleep stability, while the role of TRN in the process of propofol-induced anesthesia is still unknown. Here, we investigated the function of the anterior TRN in propofol general anesthesia. Our results demonstrated that the neural activity of anterior TRN is suppressed during propofol anesthesia, whereas it is robustly activated from anesthesia by recording the calcium signals using fiber photometry technology. The results showed that the activation of anterior TRN neurons by chemogenetic and optogenetic methods shortens the emergency time without changing the induction time. Conversely, chemogenetic or optogenetic inhibition of the TRN neurons leads to a delay in the recovery time. Our study showed that anterior TRN is crucial for behavioral arousal without affecting the induction time of propofol anesthesia.


Subject(s)
Anterior Thalamic Nuclei/metabolism , Arousal/drug effects , GABAergic Neurons/metabolism , Propofol/pharmacology , Animals , Male , Mice
14.
Arch Toxicol ; 95(7): 2431-2442, 2021 07.
Article in English | MEDLINE | ID: mdl-33852043

ABSTRACT

Hepatocytes are the main cell components of the liver and perform metabolic, detoxification, and endocrine functions. Functional hepatocytes are of great value in drug development, toxicity evaluation, and cell therapy for liver diseases. In recent years, an increasing number of in vitro models have been developed to screen drugs and test their toxicity. However, maintaining hepatocyte function in vitro for a long time is a serious challenge. Even freshly isolated liver cells cultured for a short time may lose function via spontaneous dedifferentiation. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long-term in vitro studies are required. In this study, we developed a conditioned culture system composed of a small-molecule combination that can maintain hepatocyte morphology and functions over the long term. Two-month culture of primary human hepatocytes showed that the conditioned medium was able to stably preserve hepatic functions such as albumin and α-antitrypsin secretion, hepatic transport activity, urea synthesis, and ammonia elimination. Furthermore, this culture model can be used to assess drug-induced hepatotoxicity in vitro. In summary, our work suggests a feasible approach to maintain hepatocyte function in vitro and proposes a promising model for long-term toxicological studies and drug development.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Diseases/metabolism
15.
Sci Transl Med ; 12(551)2020 07 08.
Article in English | MEDLINE | ID: mdl-32641490

ABSTRACT

Clinical advancement of the bioartificial liver is hampered by the lack of expandable human hepatocytes and appropriate bioreactors and carriers to encourage hepatic cells to function during extracorporeal circulation. We have recently developed an efficient approach for derivation of expandable liver progenitor-like cells from human primary hepatocytes (HepLPCs). Here, we generated immortalized and functionally enhanced HepLPCs by introducing FOXA3, a hepatocyte nuclear factor that enables potentially complete hepatic function. When cultured on macroporous carriers in an air-liquid interactive bioartificial liver (Ali-BAL) support device, the integrated cells were alternately exposed to aeration and nutrition and grew to form high-density three-dimensional constructs. This led to highly efficient mass transfer and supported liver functions such as albumin biosynthesis and ammonia detoxification via ureagenesis. In a porcine model of drug overdose-induced acute liver failure (ALF), extracorporeal Ali-BAL treatment for 3 hours prevented hepatic encephalopathy and led to markedly improved survival (83%, n = 6) compared to ALF control (17%, n = 6, P = 0.02) and device-only (no-cell) therapy (0%, n = 6, P = 0.003). The blood ammonia concentrations, as well as the biochemical and coagulation indices, were reduced in Ali-BAL-treated pigs. Ali-BAL treatment attenuated liver damage, ameliorated inflammation, and enhanced liver regeneration in the ALF porcine model and could be considered as a potential therapeutic avenue for patients with ALF.


Subject(s)
Liver Failure, Acute , Liver, Artificial , Albumins , Animals , Hepatocytes , Humans , Liver , Liver Failure, Acute/therapy , Swine
16.
Mediators Inflamm ; 2020: 6458791, 2020.
Article in English | MEDLINE | ID: mdl-32565727

ABSTRACT

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is a protein involved in the regulation of RNA processing, cell metabolism, migration, proliferation, and apoptosis. However, the effect of hnRNPA2/B1 on injured endothelial cells (ECs) remains unclear. We investigated the effect of hnRNPA2/B1 on lipopolysaccharide- (LPS-) induced vascular endothelial injury in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms. LPS was used to induce EC injury, and the roles of hnRNPA2/B1 in EC barrier dysfunction and inflammatory responses were measured by testing endothelial permeability and the expression of inflammatory factors after the suppression and overexpression of hnRNPA2/B1. To explore the underlying mechanism by which hnRNPA2/B1 regulates endothelial injury, we studied the VE-cadherin/ß-catenin pathway and NF-κB activation in HUVECs. The results showed that hnRNPA2/B1 was elevated in LPS-stimulated HUVECs. Moreover, knockdown of hnRNPA2/B1 aggravated endothelial injury by increasing EC permeability and promoting the secretion of the inflammatory cytokines TNF-α, IL-1ß, and IL-6. Overexpression of hnRNPA2/B1 can reduce the permeability and inflammatory response of HUVEC stimulated by LPS in vitro, while increasing the expression of VE-Cadherin and ß-catenin. Furthermore, the suppression of hnRNPA2/B1 increased the LPS-induced NF-κB activation and reduced the VE-cadherin/ß-catenin pathway. Taken together, these results suggest that hnRNPA2/B1 can regulate LPS-induced EC damage through regulating the NF-κB and VE-cadherin/ß-catenin pathways.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Lipopolysaccharides/metabolism , NF-kappa B/metabolism , Signal Transduction , beta Catenin/metabolism , Apoptosis , Cell Proliferation , Cytokines/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/metabolism , Microscopy, Fluorescence , Permeability , RNA, Small Interfering/metabolism
17.
Front Microbiol ; 11: 597, 2020.
Article in English | MEDLINE | ID: mdl-32390962

ABSTRACT

Intestinal microbiota has been extensively studied in the context of host health benefit, and it has recently become clear that the gut microbiota influences drug pharmacokinetics and correspondingly efficacy. Intestinal microbiota dysbiosis is closely related with liver cirrhosis, especially the depletion of Lactobacillus. Therefore, the bioavailability of orally administered glycyrrhizic acid (GL) was speculated to be influenced under a pathological state. In the present study, L. murinus was isolated and screened for GL bioconversion capacity in vitro. Compared with Lactobacillus rhamnosus and Lactobacillus acidophilus, L. murinus was chosen for further investigation because it has the highest biotransformation rate. Our results showed that L. murinus could significantly improve the translocation of GL on Caco-2 cell models. Meanwhile, L. murinus was observed to have the ability to bind with the surface of Caco-2 cells and prominently downregulate the transporter gene expression level of multidrug resistance gene 1 (MDR1) and multidrug resistance protein 2 (MRP2), which were involved in the efflux of drugs. Furthermore, L. murinus was selected to be orally administred into rats in healthy and liver cirrhosis groups by a daily gavage protocol. Our data highlighted that supplements of L. murinus significantly improved the bioavailability of orally administered GL in rats, especially under a pathological condition, which may provide a novel strategy for improving the clinical therapeutic effect of liver protective drugs.

18.
Org Lett ; 22(10): 3739-3743, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32186890

ABSTRACT

A novel 6/6/5/6 tetracyclic polyketide named chartspiroton (1) was isolated from a medicinal plant endophytic Streptomyces in Dendrobium officinale. The complete structure assignment with absolute stereochemistry was elucidated through spectroscopic data, computational calculations, and single-crystal X-ray diffraction. Chartspiroton features an unprecedented naphthoquinone derivative spiro-fused with a benzofuran lactone moiety. A plausible polyketide biosynthetic pathway for 1 suggested intriguing oxidative rearrangement steps to form the five-membered lactone ring.


Subject(s)
Lactones/chemistry , Naphthoquinones/chemistry , Polyketides/chemistry , Streptomyces/chemistry , Biosynthetic Pathways , Crystallography, X-Ray , Molecular Structure , Naphthoquinones/isolation & purification , Plants, Medicinal , Polyketides/isolation & purification , Spectrum Analysis
19.
Article in English | MEDLINE | ID: mdl-32087972

ABSTRACT

In both normal turnover of the hepatic tissue and acute hepatic injury, the liver predominantly activates terminally differentiated hepatocytes to proliferate and repair. However, in chronic and severe chronic injury, this capacity fails, and liver progenitor cells (LPCs) can give rise to hepatocytes to restore both hepatic architecture and liver metabolic function. Although the promotion of LPC-to-hepatocyte differentiation to acquire a considerable number of functional hepatocytes could serve as a potentially new therapeutic option for patients with end-stage liver disease, its development first requires the identification of the molecular mechanisms driving this process. Here, we found that the epithelial cell adhesion molecule (EpCAM), a progenitor cell marker, regulates the differentiation of LPCs into hepatocytes through Notch1 signaling pathway. Western blotting (WB) revealed a consistent expression pattern of EpCAM and Notch1 during LPC-to-hepatocyte differentiation in vitro. Additionally, overexpression of EpCAM blocked LPC-to-hepatocyte differentiation, which was in consistent with the repressive role of Notch signaling during hepatic differentiation. WB and immunofluorescence data also showed that the upregulation of EpCAM expression increased the generation of Notch intracellular domain (N1ICD), indicating the promotion of Notch1 activity. Our results established the EpCAM-Notch1 signaling axis as an inhibitory mechanism preventing LPC-to-hepatocyte differentiation in vitro.

20.
J Agric Food Chem ; 68(6): 1588-1595, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31994388

ABSTRACT

The discovery of new, safe, and effective pesticides is one of the main means for modern crop protection and parasitic disease control. During the search for new insecticidal secondary metabolites from endophytes in Stemona sessilifolia (a traditional Chinese medicine with a long history as an insecticide), 10 new insecticidal endostemonines A-J (1-10) were identified from an endophytic Streptomyces sp. BS-1. Their structures were determined by comprehensive spectroscopic analysis. Endostemonines A-J represent the first reported naturally occurring pyrrole-2-carboxylic ester derivatives, which consisted of different fatty acid chains at the C-2 of pyrrole ring were produced by traditional Chinese medicine endophytic microbes. All new tested compounds exhibited strong lethal activity against Aphis gossypii (LC50 value range of 3.55-32.00 mg/L after 72 h). This research highlighted the discovery of pesticide natural products from insecticidal medicinal plant endophytes for the first time, paving a new pathway for the development of pest control.


Subject(s)
Endophytes/chemistry , Heterocyclic Compounds, 3-Ring/metabolism , Insecticides/metabolism , Stemonaceae/microbiology , Streptomyces/chemistry , Streptomyces/metabolism , Animals , Aphids/drug effects , Endophytes/metabolism , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/toxicity , Insecticides/chemistry , Insecticides/toxicity , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...